Nuclear Physics

1

The nucleus of one of the isotopes of nickel is represented by $^{60}_{28}\mathrm{Ni}.$ 1

Which line in the table correctly describes a neutral atom of this isotope?

	number of protons	number of neutrons	number of orbital electrons
Α	28	32	28
В	28	60	28
С	60	28	28
D	60	32	32

A nucleus of bohrium ^x_yBh decays to mendelevium $^{255}_{101}$ Md by a sequence of three α -particle 2 emissions.

bohrium $_{v}^{x}Bh \longrightarrow dubnium + \alpha$

 $\longmapsto \text{mendelevium} \stackrel{255}{_{101}}\text{Md} + \alpha$

How many neutrons are there in a nucleus of $_{v}^{x}Bh$?

- Α 267
- В 261
- С 160
- D 154
- Which set of radioactive emissions corresponds to the descriptions given in the table headings? 3

	high-speed electrons	high-speed high-speed electrons helium nuclei	
Α	α	β	γ
В	α	γ	β
С	β	α	γ
D	β	γ	α

Strontium- 90 $\binom{90}{38}$ Sr) is radioactive and emits β -particles. 4

Which equation could represent this nuclear decay?

- ${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{39}\text{Sr} + {}^{0}_{-1}\beta$ Α
- **B** ${}^{90}_{38}$ Sr $\rightarrow {}^{90}_{39}$ Y + ${}^{0}_{-1}$ β
- **C** ${}^{90}_{38}\text{Sr} \rightarrow {}^{90}_{37}\text{Rb} + {}^{0}_{1}\beta$
- **D** ${}^{90}_{38}$ Sr $\rightarrow {}^{90}_{37}$ Sr + ${}^{0}_{1}\beta$
- 5 Protons and neutrons are thought to consist of smaller particles called quarks.

The 'up' quark has a charge of $\frac{2}{3}e$: a 'down' quark has a charge of $-\frac{1}{3}e$, where e is the elementary charge (+1.6 x 10^{-19} C).

npilation How many up quarks and down quarks must a proton contain?

		up qua	rks	do	wn qua	rks
	Α	0			3	
	В	1			1	
	С	1			2	
1	D	2			1	

A nucleus of the nuclide $^{241}_{94}$ Pu decays by emission of a β -particle followed by the emission of an 6 α -particle.

Which of the nuclides shown is formed?

- ²³⁹₉₃Np C ²³⁷₉₃Np ²³⁹₉₁Pa ²³⁷92 D Α В
- Which two nuclei contain the same number of neutrons? 7
 - **A** ${}^{12}_{6}$ C and ${}^{14}_{6}$ C
 - **B** ${}^{16}_{7}$ N and ${}^{15}_{8}$ O
 - **C** $^{23}_{11}$ Na and $^{24}_{12}$ Mg
 - **D** $^{32}_{14}$ Si and $^{32}_{15}$ P

8 A thin gold foil is bombarded with α -particles as shown.

D proton number.

9

10 The following represents a sequence of radioactive decays involving two α -particles and one β -particle.

²¹⁷₈₅At
$$\xrightarrow{\alpha} V \xrightarrow{\alpha} W \xrightarrow{\beta} X$$

What is the nuclide X?

A $^{213}_{85}$ At **B** $^{215}_{77}$ Ir **C** $^{209}_{82}$ Pb **D** $^{217}_{81}$ TI

11 A student conducts an experiment using an α -particle source.

When considering safety precautions, what can be assumed to be the maximum range of $\alpha\text{-particles}$ in air?

- A between 0 and 5 mm
- B between 5 mm and 200 mm
- C between 200 mm and 500 mm
- D between 500 mm and 1000 mm
- 12 What is a correct order of magnitude estimate for the diameter of a typical atomic nucleus?

A 10^{-14} m **B** 10^{-18} m **C** 10^{-22} m **D** 10^{-26} m

13 The decay of a nucleus of neptunium is accompanied by the emission of a β -particle and γ -radiation.

What effect (if any) does this decay have on the proton number and the nucleon number of the nucleus?

	proton number	nucleon number
A	increases	decreases
В	decreases	increases
С	unchanged	decreases
D	increases	unchanged

14 Radon-220 is radioactive and decays to Polonium-216 with the emission of an α -particle. The equation for the radioactive decay is shown.

 $^{220}_{86}\text{Rn} \rightarrow \,^{216}_{84}\text{Po}$ + $^{4}_{}\text{He}$

How many neutrons are in the radon and polonium nuclei?

	Rn	Po
Α	86	84
в	134	132
С	220	212
D	220	216

15 A detector is exposed to a radioactive source. Fluctuations in the count-rate are observed.

What do these fluctuations indicate about radioactive decay?

- A It is random.
- **B** It is spontaneous.
- **C** It is exponential.
- **D** It is non-linear.
- **16** The symbol $\frac{77}{32}$ Ge represents a nucleus of germanium that decays to a nucleus of arsenic by emitting a β -particle.

What is the symbol of this arsenic nucleus?

A ${}^{76}_{32}$ As **B** ${}^{78}_{32}$ As **C** ${}^{78}_{31}$ As **D** ${}^{77}_{33}$ As

17 Each of the nuclei below is accelerated from rest through the same potential difference.

Which one completes the acceleration with the lowest speed?

- **A** ${}_{1}^{1}$ **H B** ${}_{2}^{4}$ **He C** ${}_{3}^{7}$ Li **D** ${}_{4}^{9}$ Be
- **18** A radioactive nucleus is formed by β -decay. This nucleus then decays by α -emission.

Which graph of proton number Z plotted against nucleon number N shows the β -decay followed by the α -emission?

19 What is the approximate mass of a nucleus of uranium?

A 10^{-15} kg **B** 10^{-20} kg **C** 10^{-25} kg **D** 10^{-30} kg

20 The numbers of protons, neutrons and nucleons in three nuclei are shown.

nucleus	number of protons	number of neutrons	number of nucleons
Х	15	16	31
Y	15	17	32
Z	16	16	32

Which nuclei are isotopes of the same element?

Α	X and Y	В	X and Z	С	Y and Z	D	none of them
		_		•		_	

21 In an experiment to investigate the nature of the atom, a very thin gold film was bombarded with α -particles.

What pattern of deflection of the α -particles was observed?

- A few α -particles were deflected through angles greater than a right angle.
- **B** All α -particles were deflected from their original path.
- **C** Most α -particles were deflected through angles greater than a right angle.
- **D** No α -particle was deflected through an angle greater than a right angle.
- **22** When a nucleus of $^{238}_{92}$ U absorbs a slow neutron it subsequently emits two β -particles.

What is the resulting nucleus?

A $^{240}_{93}$ Np **B** $^{240}_{91}$ Pa **C** $^{239}_{94}$ Pu **D** $^{239}_{90}$ Th

- 23 Which conclusion can be drawn from the results of the experiment showing the scattering of α -particles by gold foil?
 - A Electrons orbit the atomic nucleus in well-defined paths.
 - **B** Nuclei of different isotopes contain different numbers of neutrons.
 - **C** The atomic nucleus contains protons and neutrons.
 - **D** The nucleus is very small compared with the size of the atom.

24 A nickel nucleus ⁵⁹₂₈Ni can be transformed by a process termed K-capture. In this process the nucleus absorbs an orbital electron.

If no other process is involved, what is the resulting nucleus?

⁵⁸Ni ⁵⁸Co **C** ⁵⁹₂₇Co ⁵⁹29Cu D Α В

25 An atomic nucleus emits a β -particle.

What change does this cause to the proton and nucleon numbers of the nucleus?

	proton number	nucleon number	
Α	-1	+1	
в	0	_1	
С	+1	-1	
D	+1	0	
criptio	ons of a γ -ray and a	ι β-particle?	2 i lat

26 Which are the correct descriptions of a γ -ray and a β -particle?

		γ-ray		β-particle
Α	high-spe	ed electron		electromagnetic radiation
в	electrom	agnetic radi	ation	Helium-4 nucleus
С	electrom	agnetic radi	ation	high-speed electron
D	high-spe	ed electron		Helium-4 nucleus

27 A certain nuclide, Uranium-235, has nucleon number 235, proton number 92 and neutron number 143. Data on four other nuclides are given below.

Which is an isotope of Uranium-235?

	nucleon number	proton number	neutron number
Α	235	91	144
В	236	92	144
С	237	94	143
D	238	95	143

28 The symbol $^{77}_{32}$ Ge represents a nuclide of germanium that decays to a nuclide of arsenic (As) by emitting a β -particle.

What is the symbol of this arsenic nuclide?

- **A** ${}^{76}_{32}$ As **B** ${}^{78}_{32}$ As **C** ${}^{78}_{31}$ As **D** ${}^{77}_{33}$ As
- **29** The table shows three properties of different types of ionising radiation.

	Х	Y	Z
charge	0	–1 e	+2e
mass	0	<u>1</u> 1840 и	4 u
speed	С	~0.9 <i>c</i>	~0.1 <i>c</i>

What are the radiations X, Y and Z?

	speed c ~0.9c		40	0.1.			
			0.9 <i>C</i>	~0.1 <i>c</i>			
X ,	Y and	d Z ?					
			х	Y		Z	
	Α	A alpha		beta	1	X-rays	.0
	B gamma		alpha	a	beta		
	С	gar	mma	beta	1	alpha	8
	D	X-	rays	alpha	a	beta	Ŧ

30 A nuclear reaction is represented by the equation

$${}^{16}_{8}\text{O} + {}^{4}_{2}\text{He} \rightarrow {}^{19}_{9}\text{F} + \text{X}.$$

What is particle X?

- **A** an α -particle
- **B** a β -particle
- C a neutron
- D a proton
- **31** A nucleus Q has the notation ${}^{y}_{x}Q$.

Which of the following is an isotope of Q?

A
$$_{x}^{y-1}$$
Q **B** $_{x-1}^{y}$ Q **C** $_{x+1}^{y}$ Q **D** $_{x+1}^{y-1}$ Q

32 Two α -particles with equal energies are fired towards the nucleus of a gold atom.

Which diagram best represents their paths?

- 33 How is it possible to distinguish between the isotopes of uranium?
 - A Their nuclei have different charge and different mass, and they emit different particles when they decay.
 - **B** Their nuclei have different charge but the same mass.
 - **C** Their nuclei have the same charge but different mass.
 - **D** Their nuclei have the same charge and mass, but they emit different particles when they decay.
- 34 What is **not** conserved in nuclear processes?
 - A energy and mass together
 - B nucleon number
 - C neutron number
 - D charge

35 A thin gold foil is bombarded with α -particles as shown.

- 37 The following particles are each accelerated from rest through the same potential difference. Which one completes the acceleration with the greatest momentum?
 - **A** α-particle
 - B electron
 - **C** neutron
 - **D** proton

37 Radon ${}^{222}_{86}$ Rn decays by α - and β -emission to bismuth ${}^{214}_{83}$ Bi.

For the decay of each nucleus of radon, how many α - and β -particles are emitted?

	α -particles	β–particles
Α	1	1
в	2	1
С	1	2
D	2	2

- 38 Which conclusion can be drawn from the results of the experiment showing the scattering of ompilation α -particles by gold foil?
 - Electrons orbit the atomic nucleus in well-defined paths. Α
 - Nuclei of different isotopes contain different numbers of neutrons. В
 - С The atomic nucleus contains protons and neutrons.
 - The nucleus is very small compared with the size of the atom. D
- **39** Which statement concerning α -particles is correct?
 - An α -particle has charge +4e. Α
 - An α -particle is a helium atom. В
 - С When α -particles travel through air, they cause ionisation.
 - D When α -particles travel through a sheet of gold foil, they make the gold radioactive.
- 40 Where are electrons, neutrons and protons found in an atom?

	electrons	neutrons	protons
Α	in the nucleus	in the nucleus	orbiting the nucleus
в	in the nucleus	orbiting the nucleus	in the nucleus
С	orbiting the nucleus	in the nucleus	orbiting the nucleus
D	orbiting the nucleus	in the nucleus	in the nucleus

41 A $^{238}_{92}$ U nucleus decays in two stages to a $^{234}_{91}$ Pa nucleus.

What was emitted in these two stages?

C $\beta + \beta$ α+β Α B $\alpha + \gamma$ D $\beta + \gamma$